Anta $F:\mathcal{U} \to \mathcal{V}$ har matrisen
$$(F)_{\underline{v}}^{\underline{u}} = \begin{pmatrix} 2 & -1 \\ -3 & 1 \\ 3 & 2 \end{pmatrix}$$
m.a.p. baserna $\underline{u}$ och $\underline{v}$ för $\mathcal{U}$ respektive $\mathcal{V}$. Låt $\underline{w}$ vara en annan bas i $\mathcal V$ och anta också att vi har basbytesmatrisen
$$T_{\underline{w}}^{\underline{v}}= \begin{pmatrix} -2 & 0 & 0 \\ -3 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$
Hitta matrisen för $F$ m.a.p. baserna $\underline{u}$ och $\underline{w}$.